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For Anderson localization models, there exists an exact real-space renormalization procedure at fixed energy
which preserves the Green’s functions of the remaining sites [H. Aoki, J. Phys. C 13, 3369 (1980)]. Using this
procedure for the Anderson tight-binding model in dimensions d=2,3, we study numerically the statistical
properties of the renormalized on-site energies € and of the renormalized hoppings V as a function of the linear
size L. We find that the renormalized on-site energies € remain finite in the localized phase in d=2,3 and at
criticality (d=3), with a finite density at e=0 and a power-law decay 1/€ at large |e|. For the renormalized
hoppings in the localized phase, we find: In V, :—i+L‘”u, where ¢, is the localization length and u a
random variable of order one. The exponent w is the droplet exponent characterizing the strong disorder phase
of the directed polymer in a random medium of dimension 1+(d-1), with w(d=2)=1/3 and w(d=3)=0.24.
At criticality (d=3), the statistics of renormalized hoppings V is multifractal, in direct correspondence with the
multifractality of individual eigenstates and of two-point transmissions. In particular, we measure p,,,=1 for
the exponent governing the typical decay In V;, =—p,,, In L, in agreement with previous numerical measures of
@y, =d+pyy,=4 for the singularity spectrum f(a) of individual eigenfunctions. We also present numerical

results concerning critical surface properties.
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I. INTRODUCTION

In statistical physics, any large-scale universal behavior is
expected to come from some underlying renormalization
group (“RG”) procedure that eliminates all the details of mi-
croscopic models. In the presence of quenched disorder, in-
teresting universal scaling behaviors usually occur both at
phase transitions (as in pure systems) but also in the low-
temperature disorder-dominated phases. Since the main
property of frozen disorder is to break the translational in-
variance, the most natural renormalization procedures that
allow to describe spatial heterogeneities are a priori real-
space RG procedures.! However, real-space RG such as the
Migdal-Kadanoff block renormalizations® contain some ap-
proximations for most disordered models of interest (these
RG procedures become exact only for certain hierarchical
lattices>*). In this respect, an important exception is provided
by Anderson localization,” which has remained a very active
field of research over the years (see reviews 6-12): for the
usual Anderson tight-binding model in arbitrary dimension d,
Aoki'3*1> proposed an exact real-space RG procedure at
fixed energy that preserves the Green’s functions for the re-
maining sites (see more details in Sec. II below). However,
the numerical results on the RG flows obtained by Aoki
thirty years ago were limited to systems of linear sizes L
=16 in dimension d=2,* L=<8 in dimension d=3,'>!* and
to a very small statistics over the samples. The aim of the
present paper is thus to obtain more detailed numerical re-
sults concerning the statistics of renormalized on-site ener-
gies and renormalized hoppings for Anderson tight-binding
model in dimension d=2, where only the localized phase
exists, and in dimension d=3, where there exists an Ander-
son transition. Our main conclusions are the following: (i) in
the localized phase in dimension d=2,3, the statistics of
renormalized hoppings is not log normal (in contrast with the
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conclusions of Refs. 13 and 14 based on numerics on too
small systems), but involves the same universal properties as
the directed polymer model in dimension 1+(d—1), in agree-
ment with Refs. 16-18; (ii) at criticality, the statistics of
renormalized hoppings is multifractal in direct relation with
the multifractality of eigenstates (see reviews 10 and 12) and
the multifractality of the two-point transmission.!-2!

The paper is organized as follows. In Sec. II, we describe
the exact renormalization rules for Anderson models at fixed
energy, and explain the physical meaning of renormalized
observables in terms of the Green’s function. The statistical
properties of renormalized on-site energies are discussed in
Sec. III. The statistics of renormalized hoppings is studied in
the localized phase in Sec. IV, and at criticality in Sec. V.
Our conclusions are summarized in Sec. VI.

II. REAL-SPACE RENORMALIZATION RULES AT FIXED
ENERGY

A. Anderson localization models

The RG procedure described below can be applied to any
Anderson localization model of the generic form

H=2 eli)il+ 2 Vi |l (1)
i 1,j

where ¢; is the on-site energy of site i and V; ; is the hopping
between the sites i and j.

1. Anderson tight-binding model in dimension d=2 and d=3

The usual Anderson tight-binding model’ corresponds to
the case where

(a) the sites (i) live on an hypercubic lattice in dimension

d;
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(b) the hopping V ; is unity if i and j are nearest neighbors
(and zero otherwise);

(c) the on-site energies ¢; are independent random vari-
ables drawn from the flat distribution

1 w w
M@=W4—ESQSE) (2)

The width W thus represents the initial disorder strength. It is
known that in dimension d=1,2, only the localized phase
exists, whereas in dimension d=3, there exists an Anderson
transition at some critical disorder W, whose numerical value
is around (see review 11 and references therein)

W, = 16.5. 3)

2. Power-law random-banded matrix model

The power-law random-banded matrix (PRBM) model is
defined as follows: the matrix elements V; ; are independent
Gaussian variables of zero-mean V; ;=0 and of variance
— 1

2
vi,j = rij\2a’ (4)
1+(%)

b

where r;; is the distance between sites i and j. One may
consider either a line geometry with r; ;=|j—i| or the ring

geometry of size L (periodic boundary conditions) with

AL — ésin(m) (5)

L] T L

We refer to our recent works?*2! for more details and refer-
ences on the PRBM model. The most important property is
that the value of the exponent a determines the localization
properties:>> for a>1 states are localized with integrable
power-law tails, whereas for a <1 states are delocalized. At
criticality a=1, states become multifractal.?3-2

B. RG rules upon the elimination of one site

We now consider the Schrodinger equation at a given en-
ergy E for an Hamiltonian of the form of Eq. (1). To elimi-
nate a site iy, we use may the Schrodinger equation projected
on this site

Eig) = &, ig) + 2 Vi j9)) (6)
J
to make the substitution
1
Wio) = =2 Vi 90 (M)
io J

in all other remaining equations. Then from the point of view

of other sites, any factor of the form Vi,iol/I(l’O) has to be
replaced by

. Vii

Vi,iolﬂ(lo) - E

— 2 Vi Y0, (8)

ig J

i.e., the hoppings between two neighbors (i, ) of i are renor-
malized according to
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sz;w:vu_{_M (9)

and the on-site energy of each neighbor i of i, is renormal-
ized according to

ew ViigVii
eV =g+—. (10)
E-¢
0
These renormalizations equations are exact since they are
based on elimination of the variable (i) in the Schrodinger
equation. The RG rules of Egs. (9) and (10) have been intro-
duced by Aoki'>!* by considering the equations satisfied by
the Green’s function. Here we have chosen to derive them in
the most elementary way by direct substitution in the
Schrodinger equation to make obvious their origin and their
exactness.

As stressed by Aoki,'>!* the RG rules of Egs. (9) and (10)
preserve the Green’s function for the remaining sites. This
means for instance that if external leads are attached to all
surviving sites, the scattering properties will be exactly de-
termined using the renormalized parameters. To get a better
intuition of the physical meaning of the renormalized param-
eters, it is thus interesting to consider the simplest cases
where the disordered system is coupled to only one or two
external wires as we now describe.

C. Physical meaning of the renormalized on-site energies

If one uses the RG rules of Egs. (9) and (10) until there
remains only a single site called A, the only remaining pa-
rameter is the renormalized on-site energy €,(E). If an exter-
nal wire is attached to this site A, the scattering eigenstate | i)
satisfies the Schrodinger equation

H|y)=E[y) (11)

inside the disorder sample and in the perfect wire character-
ized by no on-site energy and by hopping unity between
nearest neighbors. Within the wire, one has thus the plane-
wave form

Yx=x4) = ekmxa) 4 pomikla=xy) (12)
where the energy E is related to the wave vector k by
E=2cos k. (13)

The reflexion coefficient r of Eq. (12) is determined by the

ratio

Plxy—1) B ek 4 ek
Plxs)

that is imposed by the Schrodinger equation [Eq. (11)] pro-
jected onto site A. This can be computed in two ways as we
now discuss.

R

1+r (14)

1. Solution in terms of the renormalized on-site energy

In terms of the renormalized on-site energy €4(E), the
Schrodinger Eq. (11) projected onto site A simply reads
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E(xy) = €o(E)thlx,) + hlx, — 1), (15)

i.e., the ratio of Eq. (14) is directly related to the renormal-
ized on-site energy €y,

R=E-¢,(E). (16)

2. Solution in terms of the spectrum of the closed system

We denote by (E,,,) the spectrum of the disordered
closed system so that the Hamiltonian inside the disordered
sample reads

Hsystem: E El1|¢n><¢n| (17)

In the presence of the wire, the scattering state |¢/) of Eq.
(11), which takes the form of Eq. (12) in the wire, can be
decomposed within the disordered system on the (¢,) basis

) =2 a,|b,). (18)

Projecting the Schrodinger equation [Eq. (11)] on (¢,,| yields
the coefficients

_ G(xa) Plxs = 1)
" E-E '

m

(19)

In particular at the contact point A, one obtains

2
w(xA) = 2 a’nd’n(xA) = lp(xA - I)E % (20)

so that the ratio R of Eq. (14) reads

1

X 2
E:E%EGE(XA,XA) (21)

n

in terms of the Green’s function G of the closed system.

3. Relation between the on-site energy and the Green’s
Jfunction

In conclusion, the comparison of Egs. (16) and (21) yields

1 | ¢n(xA)|2
E

E-eiB) Gplgxy) = 2 (22)

n - En

i.e., the on-site energy €4(E) of the remaining site A is di-
rectly related to the Green function Gg(x,,x4) at coinciding
points.

D. Physical meaning of the renormalized hoppings

If one uses the RG rules of Egs. (9) and (10) until there
remains only two sites called A and B, the only remaining
parameters are the two renormalized on-site energies €,(E)
and €z(E) and the renormalized hoppings V,z(E).

1. Solution in terms of the renormalized parameters

In terms of the renormalized parameters, the Schrodinger
equation [Eq. (11)] projected onto sites A and B simply reads
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E(xy) = €4(E)hl(xy) + hlxy — 1) + Vu5(E) hlxp),

Ei(xg) = €5(E)Plxp) + lxg+ 1) + Vpa(E)ihlx,). (23)

If two external wires are attached to A and B the scattering
eigenstate |¢) satisfies the Schrodinger equation [Eq. (11)]
inside the disorder sample and in the perfect wires, charac-
terized by no on-site energy and by hopping unity between
nearest neighbors, where one requires the plane-wave forms

Yin(x = x4) = 07 4 gm0, (24)

Yousx = xp) = 1*78), (25)

These boundary conditions define the reflection amplitude r
of the incoming wire and the transmission amplitude ¢ of the
outgoing wire. The boundary conditions of Eq. (25) deter-
mine the following ratio on the outgoing wire:

lﬂ(xB + 1) ik
Plxp) - (29)
The following ratio:
_ Plx,— 1)
k= Hxa) @7)

concerning the incoming wire can be then computed in terms
of the three real renormalized parameters from Eq. (23),

2
VAB

R=FE-€,————.
AT E—(eg+e™)

(28)

The reflexion coefficient r of Eq. (25) is then obtained as

R - e—ik
r=— , 29
R (29)

yielding the Landauer transmission
T=*=1-|r* (30)

To simplify the discussion, we will focus in this paper on the
case of zero energy E=0 (wave vector k=/2) that corre-
sponds to the center of the band. The Landauer transmission
then reads in terms of the renormalized parameters,

4fo3(6129 +1)
[ea(ep+1) = Vigesl +[e5+ 1+ Vi
31)
For later purposes, it is convenient to rewrite Egs. (23) as a
system giving the values #(x,) and ¢(xp) at the contact

points in terms of the values ¢(x,—1) and ¢(xz+1) of the
wires as

T(E=0)=

\%
Wxy—1) A2

E-enE-ep T

(32)

1
lxy) = (E—eD
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Vg 1
Xp) = X — 1)+ ——hlxz+ 1),
W)= - eD " (E—epp
(33)
with the notation
VZ
D=1-—-"2— (34)

C(E-e)(E-e)

2. Solution in terms of the spectrum of the closed system

As above, we denote by (E,, ¢,,) the spectrum of the dis-
ordered closed system [Eq. (17)] and decompose the scatter-
ing state on the (¢,) basis as in Eq. (18). Projecting the
Schrédinger equation [Eq. (11)] on (¢,,| yields the coeffi-
cients

_ ¢;(XA) xy—1) + ¢;(XB) Pxg+1)

a, (35)
E-E, E-E,
In particular at the contact points A and B, one obtains
Plx,y) = E @, u(A) = Gplxa,x0) hlxy = 1)
+ Gplxp,xa)lxg + 1),
Plxp) = E @, $,(B) = Gp(x,x5) h(xs = 1)
+ Gg(xp,xp)lxg + 1) (36)
in terms of the Green function of the closed system
- G, ()
Glij)= 2 “E_E (37)
nerd Bl

3. Renormalized parameters in terms of the Green’s
Jfunction

In conclusion, the comparison between Eq. (33) and (36)
gives the Green’s functions in terms of the renormalized pa-
rameters

1

Guy= ————,
MT(E-€)D

1

Gpg=———,
BB~ (E- €D

_ Vas
(E—€))(E - €5)D '

Gap (38)

or by inversion the renormalized parameters in terms of the
Green’s function,

E—€A=

b}

GaaD

E-—ey=——),
B GygD
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FIG. 1. (Color online) Renormalization procedure in dimension
d=2. The initial state is the tight-binding Anderson model on a
square lattice of size L2, with periodic boundary conditions in the
two directions. Sites are then iteratively eliminated using the RG
rules of Egs. (9) and (10) until there remains only the four sites
corresponding to the large disks, i.e., there are four renormalized
on-site energies and four renormalized hoppings at distance L/2 per
sample.

G
Vig= — 22—, (39)
GuaGppD
with
% GA
=1- A0 =1-—2, (40)
(E—€4)(E - €p) GaaGpp

These relations clarify the physical meaning of the renormal-
ized parameters in terms of the Green’s functions that are
usually considered in the literature.

E. Numerical computations of renormalized parameters

The RG rules of Egs. (9) and (10) can be followed nu-
merically from the initial condition given by the model of
Eq. (1) under interest. In the following, we describe the sizes
and the statistics over the samples that we have studied for
the Anderson tight-binding model in dimension d=2 and d
=3 and the PRBM model.

1. Anderson tight-binding model in dimension d=2 and d=3

For the Anderson tight-binding model described in Sec.
IT A 1, we have followed numerically the RG rules starting
from a hypercubic lattice of size L? with periodic boundary
conditions in all d directions. In each sample, the final state
that we analyze is an hypercube of linear size L/2, as shown
on Fig. 1 for d=2 and on Fig. 2 for d=3

(i) In dimension d=2, there are four remaining sites
per sample as shown on Fig. 1, i.e., there are four renormal-
ized on-site energies and four renormalized couplings at
distance L/2. We have studied the sizes L
=12,24,36,48,60,72,84,96,108,120. The corresponding
numbers ns(L) of independent samples are of order
ny(L=12)=2.107, n,(L=60)=33.10%, and ny(L=120)=1150.

(ii) In d=3 there are eight remaining sites per sample
as shown on Fig. 2, i.e., there are eight renormalized
on-site energies and twelve renormalized couplings at
distance L/2. We have studied the sizes L
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Periodic B.C.
in the 3 directions

FIG. 2. (Color online) Renormalization procedure in dimension
d=3. The initial state is the tight-binding Anderson model on a
cubic lattice of size L3, with periodic boundary conditions in the
three directions (here for clarity, the sites of the initial model have
not be drawn in contrast to Fig. 1 concerning the case d=2 which is
more explicit). Sites are then iteratively eliminated using the RG
rules of Egs. (9) and (10) until there remains only the eight sites
corresponding to the large disks, i.e., there are eight renormalized
on-site energies and twelve renormalized hoppings at distance L/2
per sample.

=4,6,8,10,12,14,16,18,20,22,24,26,28,30. The corre-
sponding numbers n,(L) of independent samples are of order
ny(L=4)=107, n(L=10)=6.10* n,(L=20)=400, and n, (L
=30)=24.

2. Power-law random-banded matrix model

For the PRBM model described in Sec. II, we have fol-
lowed numerically the RG rules up to the final state shown
on Fig. 3 containing only the sites L/2 and L, i.e., in each
sample, there are two renormalized on-site energies and one
renormalized coupling. We have studied rings of sizes 50
=L=1800 with corresponding statistics of 10.108=n(L)
=2400 independent samples.

II1. STATISTICS OF RENORMALIZED ON-SITE
ENERGIES

A. General properties

We find that the renormalized on-site energies remain fi-
nite in all phases (localized, delocalized, and critical), and
that the histograms P;(€) corresponding to various system

FIG. 3. (Color online) Renormalization procedure for the PRBM
model with the ring geometry. Sites are iteratively eliminated using
the RG rules of Egs. (9) and (10) until there remains only the two
sites L/2 and L corresponding to the large disks, i.e., there are two
renormalized on-site energies and one renormalized hoppings per
sample.
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sizes L converge toward some stationary distribution P_(€)
that present the following common properties:

(i) P.(€) is symmetric in €e— —e [as the initial condition
of Eq. (2)].

(ii) P.(€) has a finite density P.(0) at its center €=0.
After the change in variables to y=1n|¢|, this corresponds to

P.(y=1n|d) = |¢=¢. (41)

y——0

(iii) For e— =, P, (€) presents the following power-law
decay:

1
Px(e)sjciw?. (42)
After the change of variables to y=In|e|, Eq. (42) corre-
sponds to
1
P.(y=Inl¢) « —=e7. (43)
y—+® €

The origin of the power law of Eq. (42), even when one
starts from a bounded distribution in € as in the tight-binding
Anderson model [see Eq. (2)], can be understood from the
form the RG rule of Eq. (10) which reads at zero energy E
=0

ViigVigi
€ =6-— — (44)

1

During the first steps of renormalization where the hoppings
V are finite, very large renormalized on-site energies are gen-
erated when the eliminated on-site energy €, is very small.
The finite density of 79(650) at €, =0 yields the power-law
decay of Eq. (42) via the change in variable € =-1/¢,
using the standard formula Pnew(ef’ew)de?ew=7)(e,-0)dei0. In
the remaining of this section, we present the histograms we
have measured in various cases.

B. Results for the square lattice in dimension d=2

In Fig. 4, we show the histograms of the logarithm of the
absolute value of the renormalized on-site energy e for vari-
ous sizes 12=L=120: apart from the cutoffs in the tails
imposed by different statistics over the samples, these histo-
grams coincide. This shows that the convergence toward the
stationary distribution P.(€) is quite rapid: starting from the
initial condition of Eq. (2), our results for the smallest size
/=12 have already “converged” toward the final—and very
different—distribution of Fig. 4. In Fig. 4, the slope of the
left tail is of order +1, in agreement with Eq. (41), and the
slope of the right tail is of order —1, in agreement with Eq.
(43).

C. Results for the cubic lattice in dimension d=3

Our data for the Anderson tight-binding model in d=3 are
shown in Fig. 5: both in the localized phase and at criticality,
the convergence in L toward the stationary distribution P,,(€)
is still rapid, and the measured tails are again in agreement
with Egs. (41) and (43). It turns out that for a given disorder
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FIG. 4. (Color online) Statistics of renormalized on-site energies
€ for the Anderson model on the square lattice in dimension d=2
for sizes 12=L =120 (disorder strength W=40): the histograms of
In|€| are identical (apart for the cutoff imposed by the statistics over
the samples) The left and right slopes of value unity corresponds to
Egs. (41) and (43).

value, our numerical results concerning P..(€) seem to coin-
cide for d=2 and d=3 [Fig. 4 and Fig. 5(a) corresponding to
W,=40]: the reasons of this coincidence are not clear to us
since the initial coordinence of sites clearly depends on the
dimension d.

D. Results for the PRBM model

The properties found above for Anderson tight-binding
models seem to be valid for more general Anderson models
of the form of Eq. (1). As an example, we show on Fig. 6 our
data concerning the PRBM model described in Sec. II. The
histograms of renormalized energies converge rapidly toward
their limit. The stationary distribution presents the tails of
Egs. (41) and (43) in all phases (localized, critical, and de-
localized).

E. Consequences

In conclusion, the renormalized on-site energies remain
finite random variables in all phases (localized, critical, and
delocalized). As a consequence, the behavior of the two-
point Landauer transmission of Eq. (31) is determined by the
properties of the renormalized hoppings

(i) In the delocalized phase, both the renormalized hop-
ping and the two-point transmission will remain random fi-
nite variables.

(ii) In the localized phase and at criticality where the two-
point transmission decays with the distance, its decay will be
directly related to the decay of the renormalized hopping via

In T(E = 0) = In V3, + finite. (45)
In the following, we discuss the statistics of renormalized

hoppings in the localized phase and at criticality, in relation
with the statistics of two-point transmission.
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FIG. 5. (Color online) Statistics of renormalized on-site energies
€ for the Anderson model on the cubic lattice in dimension d=3 for
sizes 4=L=20 (a) Histograms of In|e| in the localized phase
(W=40) (b) Histograms of In|€| at criticality (W,=16.5)

IV. STATISTICS OF RENORMALIZED HOPPINGS IN THE
LOCALIZED PHASE

A. Universality class of the directed polymer in a random
medium

In dimension d=1, the transfer-matrix formulation of the
Schrodinger equation yields a log-normal distribution for the

Landauer transmission,”-28
- L
In Tid_l) o« —— + L2y, (46)
L— loc

The leading nonrandom term is extensive in L and involves
the localization length §&,.. The subleading random term is of
order L'?, and the random variable u of order O(1) is Gauss-
ian distributed as a consequence of the Central Limit theo-
rem. Although it has been very often assumed and written
that this log-normal distribution persists in the localized
phase in dimension d=2,3, theoretical argumentsm’17 and
recent numerical calculations'® are in favor of the following
scaling form for the logarithm of the transmission:
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InP

(b) In| gl

FIG. 6. (Color online) Statistics of renormalized on-site energies € in the PRBM model of parameter =0.1 (a) The histograms of In|e|
at criticality a=1 for various sizes L=100,200,400,600,800 are identical (apart for the cutoff imposed by the statistics over the samples).
(b) Comparison of the stationary distributions in the localized phase (a=1.4), at criticality (¢=1) and in the delocalized phase (a=0.6). The

left and right slopes of value unity correspond to Egs. (41) and (43).

In 74 o — L+Lw(d)u,

L—oo loc

(47)

where the exponent w(d) depends on the dimension d and
coincides with the droplet exponent characterizing the strong
disorder phase of the directed polymer in a random medium
of dimension 1+(d—1) (see the review? on directed poly-
mers). The probability distribution of the rescaled variable u
is not Gaussian but is determined by the directed polymer
universality class (see Ref. 18 where its distribution in d=2
is shown to coincide with the exactly known Tracy-Widom
distribution for the directed polymer in 1+1).

The arguments in favor of the same universality class can
be decomposed in two steps:!6-18

(i) In the localized phase of Anderson localization in di-
mension d, the transmission decays exponentially with the
length, and thus directed paths completely dominate asymp-
totically over nondirected paths. In dimension d=2, the
dominance of a narrow channel can be seen on Figs. 10 and
11 of Ref. 30.

(ii) These directed paths of the Anderson model have
weights that are random both in magnitude and sign, but it
turns out that the directed polymer model which is usually
defined with random positive weights (Boltzmann weights)
keeps the same exponents in the presence of complex
weights (see section 6.3 of review 29).

In conclusion, from the relation of Eq. (45), we expect
that the renormalized hoppings will present the same statis-
tics as the Landauer transmission of Eq. (47),

L
InV,=-—+LWy4 -

loc

(48)

To check this relation, we have measured the averaged value
and the variance of the logarithm of the renormalized hop-
pings in dimension d=2,3.

B. Results for the square lattice in dimension d=2

In dimension d=2, only the localized phase exists. On
Fig. 7(a), we show the typical exponential decay correspond-
ing to a finite localization length &, in Eq. (48). In Fig. 7(b),
we show the amplitude A(In V;) of the random term in Eq.
(48): the three parameters fit A(In V;)=aL*%? +a, yields
the value

w(d=2) =0.33, (49)
in agreement with the exact result’!=3*
1
wpp(1+1) = 5 (50)

for the directed polymer in a random medium of dimension
1+1. In Fig. 8(a), we show the histograms of (In V;) for
various sizes L: as L grows, the maximum moves linearly
while the width grows as L®.

C. Results for the cubic lattice in dimension d=3

In dimension d=3, the localized phase exists in the do-
main W>W_.=16.5 for the disorder strength [Eq. (3)]. The
data shown in Fig. 9 correspond to the disorder strength W
=40. The histograms of (In V;) for various sizes L are shown
in Fig. 8(b). On Fig. 9(a), the typical exponential decay
found corresponds to a finite localization length &, in Eq.
(48). In Fig. 9(b), the amplitude A(In V;) of the random term
in Eq. (48) can be fitted by the form A(In V;)=a L%
+a, that yields the value

w(d=3)=0.24, (51)
in agreement with the measures of the droplet exponent
wpp(1+2)=0.244 obtained for the directed polymer in a
random medium of dimension 142 in various
references.>%
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(b) L

FIG. 7. Statistics of the typical renormalized hopping in d=2
where only the localized phase exists (the data shown correspond to
the disorder strength W=40) (a) Typical exponential decay: In V; is
linear in L and the slope represents the inverse of the localization
length &, [Eq. (48)]. (b) The fluctuation term A(In V;) grows as L®
[Eq. (48)] with w(d=2)=0.33.
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0.1

—40
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V. STATISTICS OF RENORMALIZED HOPPINGS AT
CRITICALITY

A. Expected multifractal statistics

At criticality, the statistics of the two-point transmission is
multifractal:'*2! the critical probability distribution of the
two-point transmission 7 takes the form

Prob(7; ~ L™)dT = L®"dk, (52)
L—»
where the multifractal spectrum ®(«) exist only for k=0 (as
a consequence of the physical bound 7, =< 1) and is related to
the singularity spectrum f(a) of eigenfunctions via

@(KEO):z{f(a:mg)—d]. (53)

At criticality the decay of the two-point transmission is di-
rectly related to the decay of the renormalized hopping via
Eq. (45). As a consequence, what is known about the statis-
tics of the two-point transmission at criticality can be trans-
lated for the renormalized hoppings. The probability distri-
bution of the renormalized hopping V; at scale L takes the
form

Prob(|V,| ~ L™)dV « L*®dp, (54)
L—cx

where
H(p=0)=®(2p)=2[fla=d+p)-d]. (55)

In particular, the typical exponent p,,, characterizing the
typical decay

InV, = —p,,InL (56)
L—+>
is related to the typical exponent «;,, of the two-point trans-
mission and to the typical exponent a,, of the singularity
spectrum via

K,
—_ —p _
pfyp = ) = atyp -d. (57)
0.4
L=4

0.3 (b) 7
0.2 q
0.1 q

0

-20 5

FIG. 8. (Color online) Histograms of the logarithm of the renormalized hopping In V; for various lengths L in the localized phase (for
the disorder strength W=40 (a) in dimension d=2 (b) in dimension d=3
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FIG. 9. Statistics of the typical renormalized hopping in d=3 in
the localized phase (W=40) (a) In V; as a function of L: the slope
represents the inverse of the localization length &,. [Eq. (48)] (b)
The fluctuation term A(ln V;) grows as L® [Eq. (48)] with
w(d=3)=0.24.

B. Results for the cubic lattice in dimension d=3

The typical exponent p,,, of Eq. (56) is measured from
the data of Fig. 10(a),

pryp = 1.05. (58)

Via Eq. (57), this value is in agreement with the numerical

measures of order***

@y = 4 (59)

for the exponent «,,, concerning the singularity spectrum of
eigenfunctions.

Of course, beyond this typical exponent, one could in
principle extract from our numerical data, results on the
whole multifractal spectrum. However, our numerical means
in d=3 are limited to rather small sizes and small statistics
(see Sec. I) in comparison with the exact diagonalization
calculations of Ref. 41. As a consequence, our numerical
results seem sufficient to measure the correct typical expo-
nent, as shown above, but we believe that they are not suf-
ficient to measure correctly the rare events that are necessary
to obtain a reliable multifractal spectrum. It may be that in
the future, more “professional numericians” will be able to

PHYSICAL REVIEW B 80, 024203 (2009)

InV
"L
1k il
-2 + e 4
@]
QX
_ \ \ \ \
0.5 1 1.5 2 2.5 3
(a) InL
-1
nv surf
L
2t 4
3t 4
4 4
5 ‘ ‘ ‘ ‘
1 15 2 25 3 3.5
(b) InL

FIG. 10. Statistics of the typical renormalized hopping in d=3 at
criticality (W=16.5) (a) In V; as a function of In L for bulk sites
(see Fig. 2): the measured slope p,,,=1.05 represents the typical
exponent of Eq. (56). (b) In Vi’"f as a function of In L for surface
sites (see Fig. 11): the measured slope p‘;)’flff =1.6 represents the
typical exponent of Eq. (60).

transform the present renormalization approach into a com-
petitive numerical method to measure the multifractal spec-
trum, but this is clearly beyond our numerical means.

C. Renormalized hopping between two surface points in
dimension d=3

At criticality, points lying on the boundaries are charac-
terized by a specific multifractal spectrum f;,,{a), different
from the bulk spectrum f(«).*>* These surface critical prop-
erties are particularly interesting in Anderson localization
models where it is more natural to attach leads to boundary
sites rather than bulk sites. We have thus considered the
renormalization procedure depicted in Fig. 11 to measure the
statistical properties of the renormalized hoppings between
two surface points. The typical behavior shown on Fig. 10(b)

surf __
In V;* =
L—+%

- in L (60)

corresponds to an exponent of order
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|
y Periodic B.C.

o1porag

FIG. 11. (Color online) Renormalization procedure in dimension
d=3 to measure the renormalized hopping VSL‘”f between two
boundary sites. The initial state is the tight-binding Anderson model
on a cubic lattice of size L3, with periodic boundary conditions in
two directions x and y and free boundary conditions in the third
direction z. Sites are then iteratively eliminated using the RG rules
of Egs. (9) and (10) until there remains only the two surface sites
corresponding to the large disks.

pil = 1.6 (61)

clearly distinct from its bulk analog of Eq. (58).
Via Eq. (57), we expect that this value corresponds to

al =d+pil = 4.6 (62)

1yp 1yp

for the typical exponent af“,’;f of the surface singularity spec-

trum of eigenfunctions. In contrast with the bulk case, we are
not aware of any direct measure of o™ in the literature to
make some comparison. As explained at the end of Sec. V B,
we believe that our numerical means are not sufficient to
measure correctly the rare events to obtain the full multifrac-
tal spectrum around this typical value. However, we expect
that our result for the typical exponent is reliable (as shown
above for the bulk case), and will be confirmed in the future
whenever the surface multifractal spectrum will be measured
via the powerful exact diagonalization techniques of Ref. 41.

From Eq. (57), we also expect that the two-point trans-
mission in d=3 between two surface points involves the
typical exponent

PHYSICAL REVIEW B 80, 024203 (2009)

K =pf =39, (63)

typ typ

D. Results for the PRBM model

For the PRBM model, we have studied in detail the mul-
tifractal properties of the two-point transmission in our pre-
vious works.?2! Since the statistics of renormalized hop-
pings can be directly deduced from them via Egs. (55), we
refer the interested reader to?*?! where we have measured
multifractal spectra at criticality a=1 for various values of
the parameter b.

VI. CONCLUSION

In this paper, we have revisited the exact real-space renor-
malization procedure at fixed energy proposed by Aoki'3-1
for Anderson localization models. We have presented de-
tailed numerical results concerning the statistical properties
of the renormalized on-site energies € and of the renormal-
ized hoppings V as a function of the linear size L for the
Anderson tight-binding models in dimension d=2 where
only the localized phase exists, and in dimension d=3 where
there exists an Anderson localization transition. Our main
conclusions are the following:

(a) The renormalized on-site energies e remain finite in
the localized phase in d=2,3 and at criticality (d=3), with a
finite density at e=0 and a power-law decay 1/ € at large |€|.

(b) In the localized phase in dimension d=2,3, the statis-
tics of renormalized couplings belongs to the universality
class of the directed polymer in a random medium of dimen-
sion 1+(d—-1), in agreement with Refs. 16-18.

(c) At criticality, the statistics of renormalized hoppings V
is multifractal, in direct correspondence with the multifrac-
tality of individual eigenstates and of two-point transmis-
sions. In particular, our measure p,,,=1 for the exponent
governing the typical decay In V;=-p,,, InL is in agree-
ment with previous numerical measures of a,,,=d+p,,,=4
for the singularity spectrum f(«) of individual eigenfunc-
tions. We have also measured the corresponding critical sur-
face properties.

In conclusion, we have shown that the large-scale proper-
ties of Anderson localization models actually emerge from
the simple real-space RG rules of Egs. (9) and (10) which
preserve exactly the Green’s functions of the remaining sites.
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